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A B S T R A C T   

Forest census allows getting precise data for logging planning and elaboration of the forest management plan. 
Species identification blunders carry inadequate forest management plans and high risks inside forest conces
sions. Hence, an identification protocol prevents the exploitation of non-commercial or endangered timber 
species. The current Peruvian legislation allows the incorporation of non-technical experts, called “materos”, 
during the identification. Materos use common names given by the folklore and traditions of their communities 
instead of formal ones, which generally lead to misclassifications. In the real world, logging companies hire 
materos instead of botanists due to cost/time limitations. Given such a motivation, we explore an end-to-end 
software solution to automatize the species identification. This paper introduces the Peruvian Amazon 
Forestry Dataset, which includes 59,441 leaves samples from ten of the most profitable and endangered timber- 
tree species. The proposal contemplates a background removal algorithm to feed a pre-trained CNN by the 
ImageNet dataset. We evaluate the quantitative (accuracy metric) and qualitative (visual interpretation) impacts 
of each stage by ablation experiments. The results show a 96.64% training accuracy and 96.52% testing accuracy 
on the VGG-19 model. Furthermore, the visual interpretation of the model evidences that leaf venations have the 
highest correlation in the plant recognition task.   

1. Introduction 

According to the FAO (Al et al., 2008), forests and trees contribute to 
growth economic, job creation, food security, energy generation and are 
fundamental to helping countries respond to climate change. The 
forestry industry produces more than 5000 timber products and gener
ates a gross value added of more than US$ 600 billion annually, 
equivalent to 1% of the world’s GDP. Whence, 80% of the forest re
sources are regulated by governments, which exploit their value chains 
and oversee its preservation and replacement programs following 
adequate forest management plans (Brito and Barreto, 2006; Soares- 
Filho et al., 2010). 

1.1. Motivation 

The Amazon forest represents the 21% of the global forest cover 
(Keenan et al., 2015) and has one of the richest diversities of tree species 
worldwide (O’neill et al., 2001; Wittmann et al., 2006). On the one 

hand, the Amazon Rainforest narrow global warming impact and pro
vides natural resources to the many communities regardless of nation
alities (Fearnside, 2008, 2012). On the other hand, timber resources are 
the main economic livelihood of the region (Barros and Uhl, 1999). 
However, despite authorities’ efforts to regularize logging exploitation, 
the concessions usually commit violations to sustainability policies 
(Finer et al., 2014; Smith et al., 2006). 

False figures declaration is one of the most common infringements, 
especially for valuable species like the Spanish cedar (Cedrela odorata) or 
the big-leaf mahogany (Swietenia macrophylla) (Finer et al., 2014).These 
deceits are a grave violation of the Convention on International Trade in 
Endangered Species of Wild Fauna and Flora (CITES). Whereby, species 
classification should be carried out by skilled botanists, but inside the 
deep Amazon, qualified experts are scarce and expensive (Ravindran 
et al., 2018). This situation worsens the control of not just endangered 
species but the full forest management plan. 

In Peru, the Supervisory Agency for Forest and Wildlife Resources 
(OSINFOR) establishes the protocol on “Technical Criteria for the 
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Evaluation of Timber Resources”. The protocol indicates that a “matero” 
(a non-technical person who recognizes the forest species at a common- 
name level) can support the identification to elaborate the forest man
agement plan. If the task complicates, then a dendrology manual has to 
be used to verify the features of the tree. In case uncertainty persists, 
then an ex-situ analysis is necessary. 

1.2. Proposed solution and contributions 

As many authors mention (Azlah et al., 2019; Belhumeur et al., 2008; 
Jeon and Rhee, 2017; Keni and Ansari, 2017; Ni and Wang, 2018), 
machine learning algorithms can solve the plant species identification 
task using high-level leaves features. Regardless of the feature extraction 
technique, these tools require significant amounts of data that are un
available for every case of study and even less in a specific context like 
deep Peruvian Amazon. 

Deep Learning (DL) methods are at the top of the state-of-the-art on 
feature representation for different domains; albeit, DL lacks interpret
ability. According to Doshi-Velez and Kim (2017), interpretability lets 
human specialists understand what a model is learning, making them 
flexible real-world solutions. Given such topics, this paper has three 
significant contributions:  

1. The paper introduces the first Peruvian Amazon Forestry Dataset, 
including its detailed metadata and the acquisition protocol 
description. The dataset collects 59,441 samples from ten of the most 
profitable and endangered species (Finer et al., 2014; Pinedo-Vas
quez et al., 1992). Further-more, we employ six different commercial 
cameras to ensure variability and to develop any flexible solution 
with real-world conditions in the future.  

2. A comparison of the four-top DL models for the leaf classification 
task: VGG-19 (Simonyan and Zisserman, 2014), AlexNet (Krizhevsky 
et al., 2012), DenseNet-201 (Huang et al., 2017), and ResNet-101 
(He et al., 2016). Also, this work includes a visual interpretation 
algorithm to understand which specific leaf features the models 
learn.  

3. A quantitative assessment of the background-removal relevance and 
model robustness for raw data. We make two training sets, one of the 
processed data and the other of raw data. Then, the models train with 
one dataset and test with the other one. 

The upcoming sections are as follows: Section 2 contains the dataset 
description. Section 3 provides a literature review for the leaf classifi
cation task. Our contributions are explained in Section 4, while Section 5 
shows the results. We discuss our findings in Section 6. Finally, Section 7 
resumes our conclusions and future works. 

2. Peruvian Amazon forestry dataset 

Tree species classification is a complex task boarded from different 
approaches, including image processing. A specimen could be identified 
based on its flowers, barks, leaves, among others (Barbedo, 2016; 
Wäldchen and Mäder, 2018). A majority of studies use foliar features 
due to their high correlation in species identification. Furthermore, 
leaves preserve their physical characteristics almost all year, unlike 
flowers or fruits (Ellis, 2009). Consequently, we focus on leaves due to 
its morphological and texture information are well-enough to perform 
an accurate classification (Novotnỳ and Suk, 2013; Thanh et al., 2018). 

According to Wäldchen and Mäder (2018), there are three types of 
plant species identification datasets: scans, pseudo-scans, and photos. 
The first two correspond to images acquired through scanning and 
shooting samples with a simple background, respectively. Their 
configuration directly deals with occlusion, overlapping, and illumina
tion problems. Photographic datasets correspond photographed speci
mens in the wild. Hitherto, the most reviewed large datasets of leaf 
images have come from North America (Belhumeur et al., 2008), North- 

eastern United States, and Canada (Kumar et al., 2012), China (Wu et al., 
2007), and Europe (Novotnỳ and Suk, 2013). These contributions, even 
though helpful, do not include Peruvian Amazon species, and do not 
share registration conditions. 

The Peruvian Amazon Forestry Dataset1 is a pseudo-scan collection 
of 59,441 leaf images of ten timber-tree species collected from the 
Allpahuayo-Mishana National Reserve, Peru. The species were selected 
because of their high commercialization, according to the OSINFOR’s 
management information system.2 Also, the species are included in the 
Peruvian official list of usable timber forest species (Resolution N 
134–2016-SERFOR-DE). The images were gathered, labeled, and orga
nized by researchers at the Instituto de Investigaciones de la Amazonía 
Peruana (IIAP) and high-skilled botanists. Metadata includes acquisition 
description (acquisition date, sensor type, spatial resolution, etc.) and 
taxonomy (scientific name, common name, taxonomic authority, taxo
nomic classification, synonyms, hierarchy, life form, life cycle, and 
reproduction). 

2.1. Acquisition protocol 

The samples are dark-background photos taken from six different 
commercial cameras, each one with different characteristics. We 
required five expeditions in different periods to build the dataset. Each 
journey follows the same acquisition protocol, which is (1) localization 
of specimens, (2) random recollection of leaves, and (3) massive digi
tization using a purple/black background. Initially, the purple back
ground was defined to contrast better the leaf color due to its green 
predominance. However, the purple background could yield anomalous 
leaf color transformations according to the illumination. In conse
quence, we switched to a black background. This acquisition protocol 
ensures data variability and avoids over-fitting. 

Fig. 1 presents a leaf from each specimen using their scientific names. 
Although all captures follow the same protocol, the ambient lighting 
varies according to the expedition date. Table 1 describes the cameras 
specifications which influence the registration (number of megapixels - 
Mpx, lens aperture, resolution and format). Fig. 2 shows the visual dif
ferences between the six camera models in similar lighting conditions 
for the species Otoba glycycarpa and Cedrela odorata. 

2.2. Dataset distribution 

Data distribution concerns the representativeness of classes since 
imbalances skew the models for specific features spaces. As a conse
quence, the predictions slope to the broader categories and model 
metrics increase. However, results in imbalance conditions are deceitful. 
As Table 2 shows, The Peruvian Amazon Forestry Dataset is almost 
balanced both by species and by devices. 

2.3. Data variability 

Two challenging qualities in an image classification dataset are the 
similarity among elements from different classes (inter-class correlation) 
and the diversity inside each class (intra-class coefficient). Like any real- 
world dataset, the Peruvian Amazon Forestry Dataset registers a high 
inter-class similarity and low intra-class correlation. Fig. 3a shows how 
similar four samples from different classes are (elliptic/ovate shapes), 
while Fig. 3b lays out the visual variation of four samples from the same 
specimen. 

3. Related works 

Over a decade ago, the feature engineering had established as 

1 http://teledeteccion.iiap.gob.pe/  
2 https://www.osinfor.gob.pe/sigo/ 
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somewhat ambiguous methodology, but still useful, to define the best 
subset of features that represents a domain. Thenceforth, DL has risen to 
the very top of machine learning technologies, with promising results 
and tremendous potential in several applications, even agricultural 
(Kamilaris and Prenafeta-Boldú, 2018; Rawat and Wang, 2017; Zhang 
et al., 2020). This review focus on feature representation from hand- 
crafted and deep-learning perspectives. 

3.1. Feature engineering 

Feature engineering still has majority acceptance in the plant species 

identification task due to data limitations that cap the training step in DL 
models. Wäldchen and Mäder (2018) overhaul 120 research proposals 
considering the studied organ and features explored over different 
datasets. Leaf-features based recognition studies prevail by considering 
general features as shape (Belhumeur et al., 2008; Novotnỳ and Suk, 
2013; Zhao et al., 2015), venation (Larese et al., 2014b,a), and texture 
(Olsen et al., 2015; Rashad et al., 2011). Features-reliability depends on 
dataset conditions and feature extraction technique (Thanikkal et al., 
2017). 

The majority of research papers focus on shape contour for classifi
cation. Belhumeur et al. (2008) match the shape of a query leaf with an 
ordered list of photographic collections by their Inner Distance Shape 
Context (IDSC). IDSC builds a 2D-histogram-descriptor at each sampled 
point along the boundary of leaves shape. Then, a non-Euclidean KNN 
algorithm ranks the most similar leaves by their histogram similarities. 
Novotnỳ and Suk (2013) include a 151 scanned species collection from 
Central Europe. After segmentation, Fourier descriptors normalize 
geometric features of the boundary. Different from previous studies, 
Zhao et al. (2015) introduce a counting-based shape descriptor, called 
Independent-IDSC, to classify global and local shape information 
independently. 

Among leaf morphological characterizations, botanists mainly use 

Fig. 1. Species from the Peruvian Amazon Forestry Dataset: (a) Aniba rosaeodora. (b) Cedrela odorata. (c) Cedrelinga cateniformis. (d) Dipteryx micrantha. (e)Otoba 
glycycarpa. (f) Otoba parvifolia. (g) Simaruba amara. (h) Swietenia macrophworylla. (i) Virola flexuosa. (j) Virola pavonis. 

Table 1 
Camera’s specifications.  

Code Camera Model Mpx Aperture Resolution Format 

DC Nikon D3500 24.2 f/1.5 6000 × 4000 JPEG 
CP1 SM-A705MN 32 f/1.7 4032 × 3024 JPEG 
CP2 SM-A105M 13 f/1.9 4128 × 3096 JPEG 
CP3 SM-A305G 16 f/2.0 4608 × 2128 JPEG 
CP4 FIG-LX3 13 f/2.2 4160 × 3120 JPEG 
CP5 IPhone6 8 f/2.2 3264 × 2448 JPEG  

Fig. 2. Samples given different acquisition devices: (a) SM-A105M. (b) SM-A305G. (c) SM- A705MN. (d)FIG-LX3. (e) Nikon D3500. (f) iPhone 6. (Above) Otoba 
glycycarpa. (Below) Cedrela odorata. 
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the venation structures to recognize species (Park et al., 2008). The use 
of venations has its reason in the complexity and diversity among the 
shape contours of the leaves (Zhang et al., 2020). On the one hand, the 
leaves of different species could be similar in shape. On the other hand, 
the same specimen could have a high variance of leaf shapes. Larese 
et al. (2014b) classify three legume varieties based only on venations. 
First, they segment the venation by the unconstrained hit or miss 
transform (UHMT) and adaptive thresholding. LEAF-GUI-measures 
technique diversifies features from veins and areoles. Larese et al. 
(2014a) also explore a multiscale UHMT computation, concluding that 
the feature diversification improves results beyond classification 
technique. 

On texture-based classification, Rashad et al. (2011) apply a 
Learning Vector Quantization (LVQ) alongside with a Radial Basis 
Function (RBF) in leaf image patches to outperform prior baselines. 
Olsen et al. (2015) propose a scale and rotation invariant enhancement 
of the Histogram of Oriented Gradients (HOG) to improve the repre
sentation of the texture. Their results suggest that the leaf skeleton 
stands out above other texture features. 

3.2. Deep learning 

The core of DL is the representation of multiple levels of abstraction 
by learning features from a dataset and extrapolating them to others. In 
the leaf image domain, Azlah et al. (2019) provide a review of tech
niques such as Bayesian, decision tree, k-nearest neighbor, support 
vector machine, probabilistic neural networks, and DL. In the same way, 

Zhang et al. (2020) present an overview of classic and DL methods to 
recognize plant species. Both works demonstrate that DL reaches better 
outcomes than traditional approaches to classify leaf images. 

Despite its benefits, DL hauls fitting issues: under-fitting and over- 
fitting. On the one hand, under-fitting happens when the model is too 
simple to explain the variance. On the other hand, over-fitting implies 
that the model cannot be generalized to another dataset. Transfer 
learning (TL) is a well-known technique to overcome the fitting issues. 
The gist of TL is to fine-tune a model trained on one task or domain to 
another one related (Goodfellow et al., 2016). 

Too et al. (2019) fine-tune CNN-based models (VGG, ResNet, 
Inception, and DenseNet) for plant species classification and disease 
detection. Qian et al. (2020) monitor invasive plant species in the wild 
by fine-tuned models (Alexnet, VGG, and GoogLeNet). Chulif et al. 
(2019) classify 10,000 plant species by using pre-trained InceptionNet 
models. Kaya et al. (2019) analyze deeply the effect of four different TL 
models on four publicly leaf datasets. (Barré et al., 2017) visualize that 
the first convolution layers learn to extract leaf venations and edges, 
while deeper layers derive high-level feature abstractions. 

According to Lee et al. (2017), hierarchical orders in leaf venation 
are the most trustworthy high-level features. Grinblat et al. (2016) 
disentangle vein morphological patterns from color and leaf shape in
formation. Next, a visualizing technique unveils relevant vein patterns. 
Other works explore joining morphological features such as vein and 
shape (Rizk, 2019; Thanh et al., 2018), or shape and texture (Shah et al., 
2017). 

Table 2 
Data distribution over tree species (horizontal) and camera model (vertical).  

Species Samples  

DC CP1 CP2 CP3 CP4 CP5 Total 

Aniba rosaeodora 1529 1547 1547 1537 402 – 6562 
Cedrela odorata 1302 1302 1304 1303 188 127 5526 
Cedrelinga cateniformis 1232 1232 1232 1230 177 176 5279 
Dipteryx micrantha 1248 1248 1248 1248 480 340 5812 
Otoba glycycarpa 1271 1281 1260 1268 136 322 5538 
Otoba parvifolia 1745 1713 1712 1716 385 – 7271 
Simaruba amara 980 1216 1216 1210 172 388 5182 
Swietenia macrophylla 1564 1586 1568 1572 146 – 6436 
Virola flexuosa 1030 1042 1040 1042 190 – 4344 
Virola pavonis 1841 1842 1832 1840 136 – 7494 
Total 13,742 14,009 13,959 13,966 2412 1353 59,411  

Fig. 3. 3a Inter-class similarity: species Otoba parvifolia, Otoba glycycarpa, Cedrela odorata, Swietenia macrophylla (left to right). 3b Intra-class variation of 
Aniba rosaeodora. 
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4. Experiments 

As seen in Fig. 1, raw images do not have lighting control or distance 
regulation between the leaf and the camera. However, noises are 
negligible, so there is no need to apply correction methods, except 
background removal due it adds texture noise in the boundary. More
over, Image size depends on the camera model (Table 1), then images 
have to be resized and padded into the architecture requirements. 

4.1. Background removal algorithm 

Given the original image IRGB composed by three matrices IR[i, j], 
IG[i, j] and IB[i, j], being i,j the spatial coordinates in the image. A 
sharpening filter enhances the IRGB’s edges definition using a Gaussian 
Blur operation (Ψ ). Eq. (1) denotes the morphological process per pixel 
per channel for IRGB, where IRGB

s is the output. 

Is
R[i, j] = 1.5⋅IR[i, j] − 0.5⋅Ψ(IR[i, j] )

Is
G[i, j] = 1.5⋅IG[i, j] − 0.5⋅Ψ(IG[i, j] )

Is
B[i, j] = 1.5⋅IB[i, j] − 0.5⋅Ψ(IB[i, j] )

(1) 

Next, we turn IRGB
s to Lab color space to boost colors and definitions. 

Lab color space approximates human vision rather than describing how 
colors should appear on digital (RGB) or in print (CMYK). According to 
Fan and Wang (2013), the translation from RGB to Lab color space is a 
two-step process. We must translate RGB space to XYZ space (Eq. (2)), 
then translate it into Lab space (Eq. (4)) using the f-function (Eq. (3)). 

Is
X [i, j] = 0.4124⋅Is

R[i, j] + 0.3576⋅Is
G[i, j] + 0.1805⋅Is

B[i, j]
Is

Y [i, j] = 0.2126⋅Is
R[i, j] + 0.7152⋅Is

G[i, j] + 0.0722⋅Is
B[i, j]

Is
Z [i, j] = 0.0193⋅Is

R[i, j] + 0.1192⋅Is
G[i, j] + 0.9505⋅Is

B[i, j]

(2)  

f (t) =
{ ̅̅

t3
√

,

7.7871∙t + 0.1379,
if t > 0.0089

otherwise (3)  

Is
L[i, j]

= 116⋅f
(

Is
Y [i, j]
100

)

− 16

Is
a[i, j]

= 500⋅
(

f
(

Is
X [i, j]

95.0489

)

− f
(

Is
Y [i, j]
100

))

Is
b[i, j]

= 200⋅
(

f
(

Is
Y [i, j]
100

)

f
(

Is
Z [i, j]

108.8840

))

(4) 

We highlight ILab
s by using the contrast limited adaptive histogram 

equalization (Pizer et al., 1987) on the L (lightness) channel getting ILab
h . 

When returning to the RGB color space (IRGB
h ) (Eqs. (5), (6) and (7)), the 

leaf color at each pixel has a predominance of green over blue. 

f − 1(t) =
{

t3,

0.1284∙t + 0.0177,
if t > 0.2069

otherwise (5)  

Ih
X [i, j]

= 95.0489⋅f − 1
(

Ih
L[i, j] + 16

116
+

Ih
a [i, j]
500

)

Ih
Y [i, j]

= 100⋅f − 1
(

Ih
L[i, j] + 16

116

)

Ih
Z [i, j]

= 108.8840⋅f − 1
(

Ih
L[i, j] + 16

116
−

Ih
b [i, j]
200

)

(6)  

Ih
R[i, j] = 3.2405⋅Ih

X [i, j] − 1.5371⋅Ih
Y [i, j] − 0.4985⋅Is

Z [i, j]
Ih

G[i, j] = − 0.9693⋅Is
X [i, j] + 1.8760⋅Ih

Y [i, j] + 0.0416⋅Is
Z [i, j]

Ih
B[i, j] = 0.0556⋅Is

X [i, j] − 0.2040⋅Ih
Y [i, j] + 1.0572⋅Is

Z [i, j]

(7) 

Henceforth, a mask performs a partial background removal following 

the Eq. (8). 

Mask[i, j] =

{
1,
0,

if Ih
G[i, j] >

(
Ih

B[i, j] + 20
)

otherwise
(8) 

We only mask the green channel (IG
h ) due it brings out edges (Eq. (9)). 

A bilateral filter BF (Tomasi and Manduchi, 1998) is then applied to 
mitigate small noises and preserve relevant boundaries resulting in IG

b . 

Ib
G[i, j] = BF

(
Ih

G[i, j]⋅Mask[i, j]
)

(9) 

Similar to Fang et al. (2009), the Otsu’s algorithm in IG
b computes the 

Otsu’s optimal threshold value (Ω), which we employ to calculate the 
two thresholds (θLow and θHigh) in the Canny edge detector (Canny, 
1986). Eq. (10) shows the computation of both thresholds by manual 
tuning. The double-threshold step in the Canny edge detector identifies 
3 kinds of pixels (strong, weak, and non-relevant) depending on its 
relationship with final edges (Eq. (11)). Finally, the algorithm chooses 
the most massive object and fills it via a morphological closing operation 
(erosion ⊖ and dilation ⊕ using a circle-shaped structuring element SE 
of diameter 15) to get the final segmentation mask MaskF (Eq. (12)). 

θLow
=

Ω − 29.75
1.41

θHigh = θLow⋅6
(10)  

ICanny = Canny
(
Ib

G, θLow, θHigh
)

(11)  

MaskF =
(
ICanny ⊕ SE

)
⊖ SE (12) 

The final segmentation mask is applied to the original image in order 
to remove the background of it getting IRGB

f (Eq. (13)). Fig. 4 displays 
stage-by-stage the background removal procedure. 

If
R[i, j ] = MaskF[i, j]⋅IR[i, j]If

G[i, j] = MaskF[i, j]⋅IG[i, j]If
B[i, j]

= MaskF
[i, j]⋅IB[i, j] (13)  

4.2. Architecture configurations 

Convolutional neural networks (CNN) outstand over DL techniques 
by disentangling high-level representations across multiple processing 
layers. CNN’s process data on two levels: a convolutional block for the 
automatic feature extraction, and fully connected layers to establish 
feature-output correlation. The convolutional block comprises con
volutional, ReLU, and max-pooling layers. Each set of convolutional 
layers diversify features by applying a set of parallel filters that process 
local sections of the input space. The feature vector integrates low-level 
local features from the first layers and higher-level representations from 
the latest ones. 

Like any other complex model, DL requires a large amount of data to 
fit appropriately, which is hard in our context. To overcome this limi
tation, we employ different architectures pre-trained with the ImageNet 
dataset. Pre-trained models capture low-level features (e.g., edges, cor
ners, color spots, etc.) from one domain and transfer them to another 
with similar characteristics. The transfer process is called fine-tuning 
due to the model only learns specific higher-level features (e.g., ar
rangements, venations, etc.). We compare four pre-trained models: (1) 
AlexNet (Krizhevsky et al., 2012, 2) VGG-19 (Simonyan and Zisserman, 
2014, 3) ResNet-101 (He et al., 2016, 4) DenseNet-201 (Huang et al., 
2017). The fully connected block is adjusted to feed off the feature 
vector and output the ten species of leaves. Table 3 describe architecture 
characteristics 

4.3. Training details 

We split the dataset by the camera model: DC, CP1, and CP2 models 
are for training/validation, and CP3, CP4, and CP5 for testing. The 
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validation samples are selected randomly from the first group. The data 
distribution is 70.12% for training, 1.69% validation, and 28.19% for 
testing. The model feeds off with 16 elements per mini-batches using the 
ADAM optimizer (Kingma and Ba, 2014) with a learning rate of 1e-3. To 
run our experiments, we use Pytorch 1.3 framework in a PC with the 
following specifications: 4.0 GHz Intel Core i9 processor, 32 GB 3000 
MHz DDR4 memory, and NVIDIA Titan RTX. 

5. Results 

Considering that DL lacks intrinsic interpretability, we introduce a 
visual-interpretability module that supports our qualitative analysis and 
expand the quantitative results. The quantitative results allow us to 
weight the impact of each stage (pre-processing and fine-tuning) in 
terms of accuracy. At the same time, visual interpretation lets us un
derstand what the model is looking at in the input space. 

5.1. Quantitative evaluation 

The pre-processing stage reduces noises and standardizes inputs, 
which enhances metrics. Nevertheless, real-world data challenges 
robustness for any model due to registration conditions are not in con
trol. Therefore, we run an experimental ablation in the background 
removal algorithm to measure if the model learns by itself how to focus 

on the leaf beyond background. 
Table 4 shows the accuracy of the fine-tuned models using pre- 

processed images and raw ones. First, we observe that pre-processed 
images do not enhance any model’s result. Second, AlexNet and VGG- 
19 models provide better outcomes comparing to ResNet-101 and 
DenseNet-201 (around 10%). Therefore, the models with more layers 
perform more complex transformations than those required for our 
dataset. 

Ideally, a robust model must classify accurately, regardless of back
ground or input noises. We analyze the model’s behavior by swapping 
testing sets between pre-processed and raw images (Table 5). The 
experimental results on model robustness show that the models suffer an 
accuracy drop. This drop varies depending on the training data: >13% 
for raw images, and > 17% for pre-trained ones. Furthermore, ResNet- 
101 and DenseNet-201 decrease up to 52%. These figures draw that 
AlexNet and VGG-19 are ideal for our context. 

To make an in-depth analysis of the CNNs performance, we evaluate 
the champion model (VGG-19) when predicting each specie. Fig. 5 show 
the confusion matrices of two trained VGG-19 on raw (Fig. 5a) and pre- 
processed (Fig. 5b) testing sets, respectively. The confusion matrices 
show that the model generalize well in all species, albeit it is not 
symetric. This condition is not odd in multi-class tasks; however, data 
imbalances increase asymmetry. The most peculiar case occurs between 
Cedrelinga cateniformis and Swietenia macrophylla classes in raw 
conditions. The first one has greater confusion ratio respect to the sec
ond one than in reverse. In contrast, Fig. 5b shows that pre-processed 
images relieve this phenomenon. 

5.2. Qualitative evaluation 

Like Lee et al. (2017) and Barré et al. (2017), the qualitative evalu
ation consists of a visual interpretation of features. Instead of visualizing 
features per layer, we apply the Integrated Gradients (Sundararajan 

Fig. 4. Intermediate results of the background removal algorithm: (4a) Input image - IRGB (4b) Sharpen Image IRGB
S . (4c) Adaptive equalization of the Lightness - IRGB

H . 
(4d) Masked green channel - IGH. (4e) Canny edge detection applied on IGb 

− ICanny. (4f) Final. (For interpretation of the references to color in this figure legend, the 
reader is referred to the web version of this article.) 
segmentation mask - MaskF. 

Table 3 
Architectures comparison: AlexNet, VGG-19, ResNet-101, and DenseNet-201.  

Network Year Depth #parameters 

AlexNet 2012 8 60 M 
VGG-19 2014 19 144 M 
ResNet-101 2016 101 44.8 M 
DenseNet-201 2017 201 20 M  
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et al., 2017) and SmoothGrad (Smilkov et al., 2017) methods over each 
model. These methods plot a point cloud, where the density denotes the 
input space relevance. Thus, a higher density in a region suggests that 
the network ponderates it the most when classifying. 

Figs. 6 and 7 show the visual representation of features when fine- 
tuning with raw and segmented images, respectively. These results 
bolster the ones gets in qualitative analysis (Table 4). AlexNet and VGG- 
19 learn high-level leaf features, such as venations and shapes (VGG-19 
more than AlexNet). Moreover, the models fine-tuned with the raw 
dataset fit even better than the other ones. A clear example of this 
observation is the ResNet-101 fine-tuned with pre-processed images 
(Fig. 7). This model has learned to classify based on lateral sections, 
almost ignoring the leaf. So, the fine-tuned ResNet-101 probably have 
exploited an error in the background removal algorithm of some images. 

6. Discussion 

Traditionally, ResNet-101, and DenseNet-201 have been considered 
inside the top-models for general feature extraction task, especially the 
ones related with ImageNet Kornblith et al. (2019). Nevertheless, our 
quantitative and qualitative evaluations evidence that AlexNet and 
VGG-19 are superior for The Peruvian Amazon Forestry Dataset since 
both derive high-quality abstractions. 

AlexNet achieves to extract shape, texture, and venation with some 
noise, while VGG-19 focus strongly in shape and venation. Conse
quently, VGG-19 has remarkable results in different leaf image pro
cessing tasks (Lee et al., 2017; Rizk, 2019; Thanh et al., 2018). 

Skip connections mitigate singularities related to the deactivation of 
units, breaking the linear dependence of the network (Orhan and Pit
kow, 2018). Residual connections are useful to explore different levels of 
features maps in complex datasets since mid to high-level abstractions. 
However, our qualitative evaluation suggests that skip connections 
could add noise in scan/pseudo scan leaf classification. 

Background removal algorithms are a standard in pre-processing 
pipelines to ensure that models focus on leaves instead of background 
(Belhumeur et al., 2008; Cruz et al., 2019; da Silva et al., 2019; Novotnỳ 
and Suk, 2013; Zhao et al., 2015). However, this step does not yield 
significant improvements, it even worsens accuracy in some settings 
when models exploit segmentation errors. Conversely, by using raw 
images, the model learns to ignore the background itself and becomes 
more robust. Those statements agree with prior works (Goeau et al., 
2017; Krause et al., 2016). 

7. Conclusions and future works 

In this paper, we present the Peruvian Amazon Forestry Dataset, 
including leaf images of ten species. It is important to remark that a 
public database is a contribution by itself since it allows the develop
ment of new research works in the area focused on the Peruvian Amazon 
conditions. Our aim is to move forward the control of endangered timber 
species by providing a resource to classify them automatically. Instead of 
delving into the creation of feature representation, such as in previous 
approaches, we reverse engineer the process by asking DL to interpret 
and elicit the particular features that best represent the leaf data. Based 
on the results, we strongly suggest using the models AlexNet and VGG- 

Table 4 
Accuracy of the models w/wo pre-processing.   

Accuracy 

Model Raw Pre-processed  

Train Validation Test Train Validation Test 

AlexNet 98.75% 97.16% 96.16% 98.21% 97.92% 95.98% 
VGG-19 96.77% 98.30% 95.15% 96.94% 97.92% 96.52% 
ResNet-101 82.25% 89.04% 83.30% 77.25% 79.02% 75.44% 
DenseNet-201 93.71% 91.30% 86.48% 91.61% 87.33% 86.29%  

Table 5 
Accuracy of the models swapping the testing sets (source → target).  

Model Accuracy 

Raw → Pre-processed Pre-processed → Raw 

AlexNet 82.35% 54.76% 
VGG-19 82.70% 78.87% 
ResNet-101 69.22% 29.56% 
DenseNet-201 65.26% 33.97%  

Fig. 5. Confusion matrices for the VGG-19 architecture.  
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19 for future real-world solutions. The interpretation results suggest that 
venations and shape are the most trustworthy morphological features. 
That reflects the trivial knowledge researchers intuitively deploy in their 
imaginative vision from the outset. Finally, this study demonstrates the 
benefits of training models with raw inputs to achieve robustness and 
accuracy. In future studies, we will explore end-to-end solutions and 
extending the dataset by adding more species. 
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