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Abstract
Given	the	sharp	increase	in	agricultural	and	infrastructure	development	and	the	pau-
city	of	widespread	data	available	to	support	conservation	management	decisions,	a	
more	rapid	and	accurate	tool	for	identifying	fish	fauna	in	the	world's	largest	freshwa-
ter	ecosystem,	the	Amazon,	is	needed.	Current	strategies	for	identification	of	fresh-
water	fishes	require	high	levels	of	training	and	taxonomic	expertise	for	morphological	
identification	or	genetic	testing	for	species	recognition	at	a	molecular	level.	To	over-
come	these	challenges,	we	built	an	image	masking	model	(U-	Net)	and	a	convolutional	
neural	net	 (CNN)	 to	classify	Amazonian	 fish	 in	photographs.	Fish	used	 to	generate	
training	data	were	 collected	and	photographed	 in	 tributaries	 in	 seasonally	 flooded	
forests	of	the	upper	Morona	River	valley	in	Loreto,	Peru	in	2018	and	2019.	Species	
identifications	in	the	training	images	(n = 3068)	were	verified	by	expert	ichthyologists.	
These	images	were	supplemented	with	photographs	taken	of	additional	Amazonian	
fish	specimens	housed	in	the	ichthyological	collection	of	the	Smithsonian's	National	
Museum	of	Natural	History.	We	generated	a	CNN	model	that	identified	33	genera	of	
fishes	with	a	mean	accuracy	of	97.9%.	Wider	availability	of	accurate	freshwater	fish	
image	recognition	tools,	such	as	the	one	described	here,	will	enable	fishermen,	local	
communities,	and	citizen	scientists	to	more	effectively	participate	 in	collecting	and	
sharing	data	 from	their	 territories	 to	 inform	policy	and	management	decisions	 that	
impact	them	directly.
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1  |  INTRODUC TION

The	Amazon	basin	is	home	to	over	2700	species	of	freshwater	fishes	
(Dagosta	&	De	Pinna,	2019;	Junk	et	al.,	2007),	many	of	which	are	of	
conservation	concern	(Albert	et	al.,	2011;	García-	Dávila	et	al.,	2018; 
Pelicice	et	al.,	2021).	Freshwater	fishes	provide	one	of	the	few	reli-
able	sources	of	protein	for	Amazonian	communities	and	represent	
an	 important	 economic	 opportunity	 through	 the	 aquarium	 trade	
(Coomes	et	al.,	2010;	Moreau	&	Coomes,	2007).	This	unique	ichthy-
ofauna	is	facing	unprecedented	threats,	such	as	deforestation	(Junk	
et	al.,	2007;	Lobón-	Cerviá	et	al.,	2015),	construction	of	hydropower	
dams	(Winemiller	et	al.,	2016),	mining	(Azevedo-	Santos	et	al.,	2021),	
climate	change	 (Bodmer	et	 al.,	2017),	 and	 in	 some	cases,	over	ex-
ploitation	 (Moreau	&	Coomes,	2007).	While	 advances	 in	 sampling	
poorly	 explored	 areas	 and	 describing	 the	 diversity	 of	 Amazonian	
fish	have	been	made	over	the	last	decade	(e.g.,	Alofs	et	al.,	2014; de 
Santana	et	al.,	2019,	2021),	the	sub-	drainages	of	the	Marañón	river	
remain	 among	 the	most	 under	 sampled	 regions	 in	 South	America	
(Jézéquel	 et	 al.,	2020).	 Freshwater	 fishes	 provide	 one	 of	 the	 few	
reliable	 sources	 of	 protein	 for	 Amazonian	 communities	 (Coomes	
et	 al.,	2010;	Moreau	&	Coomes,	2007).	 In	 less	populated	areas	of	
the	 Amazon,	 subsistence	 fishing,	 for	 both	 consumption	 and	 the	
pet	 trade,	 can	be	essential	 to	 sustaining	 life	 (Coomes	et	al.,	2010; 
Moreau	&	Coomes,	2007).	Due	to	 the	urgency	of	 these	economic	
and	ecological	threats,	efficient	data	collection	and	long-	term	mon-
itoring	are	needed	to	better	inform	mitigation	strategies	and	policy.

Traditional	 ichthyological	 sampling	 methods	 include	 focused	
netting	 and	 fishing	 efforts,	 followed	 by	 extensive	manual	 sorting,	
documentation,	 and	 identification.	Although	 effective,	 and	 neces-
sary	 in	the	Amazon	where	a	countless	number	of	 fishes	remain	to	
be	described	(Reis	et	al.,	2016),	these	methods	are	time	consuming	
and	raise	the	potential	for	misidentification	bias	(Kirsch	et	al.,	2018).	
As	a	result,	many	have	turned	to	the	assistance	of	community	scien-
tists	to	aid	 in	catch	effort	and	 identification	of	 individual	 landings,	
yet	 accurate	 species	 identification	 remains	 a	 challenge	 (Gardiner	
et	 al.,	2012;	 Swanson	 et	 al.,	2016).	 Genetic	 approaches	 have	 also	
been	 implemented	 to	 identify	many	 of	 the	 fish	 species	 inhabiting	
the	Amazon	(de	Santana	et	al.,	2021;	García-	Dávila	et	al.,	2017),	but	
these	approaches	also	rely	on	well-	identified	and	vouchered	genetic	
libraries	that	are	still	missing	for	Amazonian	fishes.	These	techniques	
require	expensive	storage	and	sample	processing	technology,	which	
are	not	readily	available	in	most	institutions	within	the	Amazon	(de	
Santana	et	al.,	2021).	In	order	to	address	the	ever-	growing	need	for	
data	and	cost-	effective	solutions,	contemporary	 fisheries	 research	
has	called	for	the	development	and	application	of	a	rapid	solution,	
namely	by	way	of	machine	 learning	models,	such	as	Convolutional	
Neural	 Networks	 (CNNs,	 e.g.,	 Perdigão	 et	 al.,	 2020).	 CNNs	 have	
the	potential	 to	enable	 rapid	 identification	of	 fish	 to	monitor	 fish-
ery	stocks,	diversity,	bycatch,	and	to	combat	 illegal	 fishing	 (Marini	
et	al.,	2018;	Perdigão	et	al.,	2020).

Machine	learning	techniques	have	been	successfully	implemented	
in	niche	modeling,	prediction	of	mass	mortality	events,	and	the	devel-
opment	of	non-	linear	ecological	time-	series	models	(Crisci	et	al.,	2012; 

Miller-	Coleman	 et	 al.,	2012;	 Recknagel,	2001).	 Image	 classification	
deep	learning	models	show	promise	in	being	applied	to	highly	diverse	
taxa	and	collections	(Borowiec	et	al.,	2021;	Norouzzadeh	et	al.,	2018; 
Sullivan	 et	 al.,	 2018;	 Wäldchen	 &	 Mäder,	 2018;	 Schuettpelz	
et	 al.,	 2017;	Weinstein,	 2017).	 Past	 attempts	 to	 identify	 fish	 taxa	
using	computer	vision	have	had	varying	degrees	of	success	across	a	
wide	breadth	of	ichthyological	data	sets.	For	example,	early	attempts	
by	Alsmadi	et	al.	 (2010)	were	able	to	 identify	20	families	of	marine	
fish	from	610	images	with	an	accuracy	of	84%.	More	recent	work	im-
proved	accuracy	to	90%	(Alsmadi	et	al.,	2019).	Hernández-	Serna	and	
Jiménez-	Segura	(2014)	used	seven	museum	collections	that	included	
both	marine	 and	Amazonian	 freshwater	 fish	 (images	per	 collection	
ranged	from	422	to	2392)	and	obtained	accuracies	between	72%	and	
92%.	Sun	et	al.	 (2016)	obtained	a	species	identification	accuracy	of	
77.27%	from	9160	AUV	images	of	fish.	A	study	by	Qin	et	al.	(2015)	
was	able	to	identify	23	deep	sea	fish	species	with	an	accuracy	of	98%	
using	a	substantial	number	of	training	images	(n = 22,370).

In	this	study,	we	developed	two	deep	learning	computer	vision	
models:	one	that	segments	fish	pixels	from	background	pixels,	and	
one	that	classifies	images	of	Amazonian	fishes	to	the	genus	level.	As	
the	first	image	classifier	for	ichthyological	monitoring	in	the	mega-
diverse	Peruvian	Amazon	basin,	we	hope	this	case	study	will	act	as	
a	primer	for	further	development	of	deep	learning	models,	as	tools	
for	conservation	stakeholders.	Deep	 learning	for	taxonomic	 image	
classification	has	proven	to	be	efficient	and	highly	accurate,	demon-
strating	 promise	 for	 improving	 participatory	monitoring	 initiatives	
(Norouzzadeh	et	al.,	2018;	Sullivan	et	al.,	2018).	Specifically,	these	
tools	will	enable	communities	 involved	 in	participatory	monitoring	
to	fill	knowledge	gaps	and	improve	data	reliability.	These	models	can	
also	provide	 a	 basis	 on	which	 to	build	 new	models	 for	 other	 spe-
cies	 of	 conservation	 concern	 and	 public	 health	 interest.	Our	 data	
and	pipeline	are	publicly	available,	which	will	enable	others	to	apply	
these	techniques	to	other	taxa.

2  |  METHODS

In	July	2018,	we	sampled	freshwater	fishes	in	small	white-	water	riv-
ers,	and	black	and	white-	water	streams	in	seasonally	flooded	forests	
of	the	upper	Morona	River	valley	in	Achuar	native	territory,	Loreto,	
Peru.	Sites	were	resampled	in	November	2018	and	November	2019.	
Fish	were	identified	by	specialists	with	the	aid	of	dichotomous	taxo-
nomic	keys	considering	morphological,	meristic,	and	morphometric	
characteristics.	Taxonomic	nomenclature	follows	Fricke	et	al.	(2018).	
A	total	of	141	fish	species	belonging	to	89	genera	and	29	families	
across	all	 sites	and	seasons	were	 identified	 (M.	Ruiz-	Tafur,	unpub-
lished	data).	Captured	fish	(n = 1967)	were	placed	on	a	1 cm	grid	or	a	
neutral	background	(leaves,	hands,	ground,	etc.)	and	photographed	
using	 a	 Nikon	 D3500	 camera,	 prior	 to	 preservation.	 Specimens	
were	 deposited	 in	 the	 ichthyology	 collection	 at	 the	 Instituto	 de	
Investigaciones	de	la	Amazonia	Peruana	(IIAP)	in	Iquitos,	Peru.	Due	
to	the	limited	number	of	images	we	had	per	species,	we	restricted	
our	analysis	to	genera	(n = 33),	using	a	minimum	threshold	of	20	field	
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images	per	genus	(n = 1615).	To	supplement	field	images,	we	incor-
porated	additional	 images	(n = 1453)	taken	of	specimens	housed	at	
the	Smithsonian	National	Museum	of	Natural	History	Department	
of	Vertebrate	Zoology,	Division	of	Fishes	collection	 (USNM)	using	
both	a	Nikon	B500	and	W100.	Fish	specimens	were	photographed	
on	both	blank	and	1 cm	grid	backgrounds	 from	multiple	angles.	 In	
total,	our	dataset	consists	of	3068	images	prior	to	processing.

2.1  |  Preprocessing steps

To	build	a	training	dataset,	we	first	removed	all	incidentally	taken/
non-	fish	 and	 unidentified	 fish	 images.	 We	 then	 built	 a	 U-	Net	
(Ronneberger	et	al.,	2015)	segmentation	model	to	classify	pixels	in	
images	 as	 fish	 or	 background	 using	 the	methods	 similar	 to	White	
et	 al.	 (2020).	 Specifically,	we	manually	masked	a	 subset	of	 images	
(n = 66;	 2	 images	 from	 each	 genus),	 using	 the	 methods	 of	 White	
et	al.	(2020),	to	use	as	a	training	set	to	build	a	U-	Net.	Our	generated	
masks	zeroed	out	 (blacked)	background	pixels,	while	 retaining	fish	
pixels.	The	model	was	built	on	a	resnet-	34	architecture	pretrained	
on	the	ImageNet	dataset	(Deng	et	al.,	2009).	All	field	and	museum	
images	were	then	masked	by	our	trained	U-	Net.	Images	which	were	
unsuccessfully	masked,	where	no	component	of	 the	original	 input	
image	remained	within	the	photo,	were	removed	from	the	dataset.	
The	remaining	 images,	which	had	at	 least	some	component	of	 the	
target	object	with	no	background,	were	then	subdivided	for	training	
and	validation	of	the	genus	identification	model.

2.2  |  Identification model architecture, 
training, and validation

We	trained	our	image	classifier	to	distinguish	between	33	fish	genera	
based	on	masked	images.	The	classifier	was	developed	using	a	Nvidia	
GeForce	(V100;	32GB	VRAM)	GPU	implementing	the	Fast.ai	 library	
(Howard	&	Gugger,	2020)	in	PyTorch	(Paszke	et	al.,	2019).	The	model	
was	 built	 on	 a	 resnet-	101	 architecture	 pretrained	 on	 the	 ImageNet	
dataset	 (Deng	 et	 al.,	2009).	 To	 develop	 our	 image	 classifier	model,	
masked	 images	 were	 randomly	 divided	 into	 training	 (n = 2387)	 and	
validation	(n = 596)	sets,	split	80/20	respectively,	to	maximize	accuracy	
(Hernández-	Serna	&	Jiménez-	Segura,	2014).	All	 images	were	resized	
by	‘squishing’	them	into	300 × 300	pixels.	We	trained	our	model	over	

60	epochs	with	1	training	session	of	random	transformations	making	
up	6/60	epochs.	Ichthyological	field	work	in	Peru	was	approved	by	the	
Smithsonian	National	 Zoological	 Park	 Institutional	Animal	Care	 and	
Use	Committee	(NZP-	IACUC	Protocol	#18-	25)	(Figure 1).

3  |  RESULTS

The	U-	Net	masking	model	was	trained	over	20	epochs,	at	which	point	
the	training	loss	and	validation	loss	were	minimized.	Our	U-	Net	was	
able	 to	successfully	mask	97.23%	(n = 2983)	of	our	 images.	 Images	
which	 were	 not	 successfully	 masked	 (n = 85)	 were	 removed	 from	
training	and	validation.	Our	Amazonian	fish	image	classifier	trained	
in	50	epochs	at	which	point	the	training	loss	and	validation	loss	were	
minimized.	The	validation	set	results,	predicted	class	versus	actual	
class,	are	summarized	 in	a	confusion	matrix	 (Figure 2).	Of	 the	596	
validation	images,	the	image	classifier	predicted	97.99%	of	them	cor-
rectly.	 Accuracy	 by	 genus	 is	 summarized	 in	 Table 1.	 The	 range	 of	
accuracy	by	genus	ranged	from	88.89%	to	100%.	The	models,	and	
associated	metadata	 are	 available	 at	 the	 Smithsonian	Figshare	 re-
pository	(https://doi.org/10.25573/	data.17315126).	The	application	
for	both	models	 is	available	online	(https://sidat	ascie	ncelab.github.
io/Amazo	nian_Fish_ML_Class	ifier/).

4  |  DISCUSSION

We	were	able	to	efficiently	build	a	state-	of-	the-	art	model	which	can	
rapidly	 identify	 standardized	Amazonian	 fish	 images	 to	 the	 genus	
level	(n = 33)	with	97.99%	accuracy,	in	line	with	the	results	of	other	
deep	 learning	 fish	 studies	 implementing	 image	classifiers	 (Alsmadi	
et	 al.,	2019;	Qin	 et	 al.,	2015).	Of	 the	 12	 incorrectly	 classified	 im-
ages	in	our	validation	set,	7	were	misclassified	outside	of	their	fam-
ily,	while	2	images	were	misclassified	outside	of	their	order.	Results	
demonstrate	 the	 importance	of	 image	quality,	 image	quantity,	and	
taxonomic	specificity	to	generating	image	classification	models	that	
will	prove	useful	 for	 identifying	diverse	taxa	 in	remote	geographic	
settings.

In	 this	 study,	 we	 attempted	 to	 control	 image	 quality	 by	 using	
masking	as	a	way	to	standardize	images.	After	visually	examining	the	
incorrectly	classified	images,	it	was	evident	that	some	of	them	were	
likely	more	difficult	to	classify	because	of	bisection	from	incidentally	

F I G U R E  1 Example	of	unmasked	(left)	
and	masked	(right)	images	of	a	fish	(Bario 
steindachneri).
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masked	fish	pixels.	In	short,	we	believe	our	masking	rendered	a	few	
of	our	images	unidentifiable	and	is	arguably	an	artifact	of	the	data	
pipeline	 rather	 than	a	 source	of	 true	error	on	 the	 image	classifier.	
One	way	 to	 improve	 the	 final	 classification	accuracy	 is	 to	capture	
multiple	clear	images	of	individual	fish	to	ensure	at	least	one	is	suc-
cessfully	 masked	 prior	 to	 inference	 for	 identification.	 While	 the	
original	 images	used	 in	 the	study	were	 taken	at	high	 resolution	of	
varying	sizes,	they	were	ultimately	resized	to	just	300 × 300	pixels.	
The	rapid	advancement	of	mobile	phone	photography	(Rasmusson	
et	al.,	2004)	and	availability	of	mobile	phones	with	cameras	capable	
of	capturing	images	even	higher	in	resolution	that	those	used	here	
(González	&	Pozo,	2019)	will	contribute	to	the	ever-	growing	quan-
tity	of	high-	quality	image	data	available	to	enable	generation	of	even	
more	robust	and	more	accurate	models.	Standardized	protocols	for	

collecting	photographic	data	in	both	field	and	museum	settings	will	
be	key	to	bolstering	future	modeling	efforts.

The	remoteness	of	the	localities	sampled	as	part	of	this	study	and	
the	cryptic	nature	of	the	species	endemic	to	these	sites	significantly	
limited	the	number	of	images,	we	were	able	to	acquire	from	the	field.	
We	 combatted	 the	 limitation	 of	 image	 quantity	 by	 photographing	
museum	 specimens	 available	 to	 us.	Utilizing	 a	 hybrid	 approach—	a	
combination	of	field	images	and	digitized	museum	collection	speci-
mens—	we	were	able	to	double	the	amount	of	data	available	to	gen-
erate	the	model.	Combining	both	museum	and	field	collected	images	
to	generate	a	classification	model	can	enable	novel	insights	that	may	
not	have	been	found	by	building	separate	museum	and	field	mod-
els	 (Lendemer	et	 al.,	2020).	 The	use	of	multiple	data	 sources,	 and	
willingness	 to	make	 these	 publicly	 available,	will	 provide	 a	 robust	

F I G U R E  2 Confusion	matrix	visualization	of	computer	vision	model	validation	results.	The	x-	axis	depicts	the	genus	predicted	by	the	
model.	The	y-	axis	depicts	the	actual	genus	to	which	the	image	belongs,	organized	by	taxonomic	class,	family	and	genus	according	to	Fricke	
et	al.	(2018).	Correct	identifications	are	depicted	in	the	left-	to-	right	diagonal,	with	a	darker	color	indicating	more	correct	identifications,	and	
blank	yellow	squares	indicating	zeros.	Masked	image	examples	on	y-	axis	are	as	follows:	(a)	Bryconops,	(b)	Tetragonopterus,	(c)	Astyanax,	(d)	
Moenkhausia,	(e)	Gymnotus,	(f)	Ancistrus,	(g)	Corydoras,	and	(h)	Bujurquina.
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framework	for	future	image	classification	models	with	limited	avail-
able	training	data.

Most	 misidentifications	 in	 our	 model	 involved	 tetras,	 small	
characids	that	are	the	dominant	fish	fauna	in	Amazonian	small	rivers	
and	streams	(de	Oliveira	et	al.,	2009).	Historically,	species-	rich	and	
closely-	related	tetras	have	been	difficult	to	 identify	due	to	cryptic	
species	 diversity	 –		where	more	 than	one	nominal	 species	may	be	
several	undescribed	species	–		and	the	lack	of	exclusive	morpholog-
ical	characters	to	identify	some	genera	(e.g.,	Astyanax > 170	species	
and	 Hyphessobrycon > 130	 species;	 Barreto	 et	 al.,	 2017;	 Escobar-	
Camacho	et	al.,	2015;	Oliveira	et	al.,	2011).	In	addition,	an	estimated	
40%	 of	 species	 in	 the	 region	 have	 yet	 to	 be	 described	 (e.g.,	 Reis	

et	al.,	2016).	Thus,	species	misidentifications	due	to	taxonomically	
complex	groups,	such	as	tetras	and	other	cryptic	assemblages,	are	
common	problems	in	manual	morphological	as	well	as	with	genetic	
identification	 approaches	 (e.g.,	 de	 Santana	 et	 al.,	 2021)	 and	 this	
must	be	considered	when	building	an	image	classifier	for	Amazonian	
fishes.	In	short,	the	output	given	by	an	image	classification	model	is	
only	as	good	as	the	label	given	to	each	class	during	training.	If	the	
target	 class	 is	not	well	defined,	 as	 it	may	be	 in	 the	case	of	 tetras,	
this	may	disrupt	the	classification	accuracy	of	the	classification	for	
those	genera.

Collection	of	accurate,	reliable	biodiversity	data	is	vital	for	mon-
itoring	ecosystem	health	and	co-	benefits	for	human	well-	being.	The	

TA B L E  1 Summary	of	validation	set	(n = 596)	results	by	genus.

Order Family Genus Correct Incorrect Total Accuracy (%)

Characiformes Iguanodectidae Bryconops 14 0 14 100

Characiformes Characidae Charax 23 0 23 100

Characiformes Characidae Tetragonopterus 10 0 10 100

Characiformes Characidae Astyanax 29 1 30 96.67

Characiformes Characidae Bario 14 0 14 100

Characiformes Characidae Hemmigrammus 61 1 62 98.39

Characiformes Characidae Hyphessobrycon 16 1 17 94.12

Characiformes Characidae Moenkhausia 73 1 74 98.65

Characiformes Characidae Creagrutus 13 1 14 92.86

Characiformes Characidae Knodus 16 0 16 100

Characiformes Characidae Tyttocharax 3 0 3 100

Characiformes Characidae Phenacogaster 15 0 15 100

Characiformes Crenuchidae Characidium 12 1 13 92.31

Characiformes Curimatidae Curimata 15 0 15 100

Characiformes Erythrinidae Erythrinus 16 0 16 100

Characiformes Gasteropelecidae Gasteropelecus 10 0 10 100

Characiformes Lebiasinidae Copella 10 0 10 100

Characiformes Lebiasinidae Pyrrhulina 25 0 25 100

Characiformes Prochilodontidae Prochilodus 19 1 20 95

Characiformes Serrasalimidae Pygocentrus 13 0 13 100

Gymnotiformes Gymnotidae Gymnotus 11 0 11 100

Siluriformes Aspredinidae Bunocephalus 24 1 25 96

Siluriformes Auchenipteridae Tatia 12 0 12 100

Siluriformes Callichthyidae Corydoras 21 0 21 100

Siluriformes Doradidae Doras 15 0 15 100

Siluriformes Heptapteridae Pimelodella 24 3 27 88.89

Siluriformes Loricariidae Otocinclus 19 0 19 100

Siluriformes Loricariidae Oxyropsis 3 0 3 100

Siluriformes Loricariidae Ancistrus 15 0 15 100

Siluriformes Loricariidae Rineloricaria 4 1 5 80

Siluriformes Pimelodidae Sorubim 6 0 6 100

Cichliformes Cichlidae Apistogramma 11 0 11 100

Cichliformes Cichlidae Bujurquina 12 0 12 100

Total 584 12 596 97.99
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emergence	of	new	technologies	such	as	mobile	applications,	wire-
less	sensor	networks,	augmented/virtual	 reality	and	high	through-
put	computing	are	already	advancing	scientific	research	by	enabling	
community	scientists	to	bridge	the	training	gap	through	instant	“ex-
pert”	verification	(Newman	et	al.,	2012).	Although	previous	efforts	
have	applied	image	classification	to	citizen	science	data	(Van	Horn	
et	al.,	2018),	none	have	targeted	freshwater	fish	in	such	highly	bio-
logically	and	culturally	diverse	sites	as	the	upper	Morona	River	val-
ley.	Given	the	importance	of	fish	as	key	indicators	of	water	quality	
and	ecosystem	health	(Harris,	1995),	as	well	as	the	dependence	of	
many	indigenous	Amazonian	communities	on	fish	as	a	reliable	source	
of	protein	(Swierk	&	Madigosky,	2014),	there	is	great	need	for	tools	
that	 increase	the	accessibility	of	 taxonomic	 identification	required	
for	 accurate	monitoring	 of	 fishes	 (Gardiner	 et	 al.,	2012;	 Newman	
et	al.,	2012).	When	deployed	 in	the	field,	our	model	will	empower	
community-	led	initiatives	to	monitor	fish	in	the	Amazon	River	basin	
to	collect	more	accurate	information	and	identify	ecological	trends	
about	 this	 integral	 source	of	 food	and	 income	 (Finer	et	 al.,	2008).	
While	the	model	presented	here	is	accurate	at	identifying	fish	to	the	
genus	level,	we	expect	this	to	be	a	first	step	toward	increased	dig-
itization	 and	 image	 generation	 to	 support	 training	 a	model	 at	 the	
species level.

Past	field	efforts	have	applied	image	classification	to	citizen	sci-
ence	data	taken	from	the	field	(Van	Horn	et	al.,	2018),	but	none	have	
targeted	 freshwater	 fish	 in	 such	 highly	 diverse	 sites	 as	 the	 upper	
Morona	River	valley.	Image	classification	models	such	as	the	model	
presented	 here	 increase	 the	 accessibility	 of	 taxonomic	 identifica-
tion	 needed	 to	 accurately	 monitor	 ecosystem	 health	 and	 natural	
resources	 (Gardiner	et	al.,	2012;	Newman	et	al.,	2012).	 In	such	an	
incredibly	diverse	ecosystem,	a	model	accurately	identifying	fish	to	
the	genus	 level	 is	a	first	step	which	will	provide	motivation	for	 in-
creased	digitization	efforts	to	obtain	sufficient	images	for	training	a	
model	at	the	species	level.

5  |  CONCLUSIONS

We	present	an	application	that	can	be	used	to	rapidly	and	accurately	
classify	freshwater	fish	from	the	upper	Morona	River	valley	 in	the	
northwest	Amazon	 to	genus	 for	 scientific	 research.	Although	able	
to	classify	33	genera	present	 in	the	current	study	area,	 the	model	
described	here	provides	a	solid	foundation	for	future	projects.	The	
application,	which	 can	be	 used	 to	 classify	 single	 images	 to	 genus,	
is	 accessible	 to	 the	 community	 online.	 The	model's	 application	 to	
images	 taken	 from	 geographic	 areas	 outside	 of	 the	 northwestern	
Amazon	has	yet	to	be	explored.
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